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We present “direct” calculations of the therm
from the time integral of the fluxflux autoco
advantage of the low rank of the half-Boltzm

al rate constant for tHe H, reaction. The rate is obtained
rrelation function, which is efficiently evaluated by taking

annized flux operator. Total rate constants are obtained from

exact total angular momentudn= 0 calculations and compared with approximate approaches for including
nonzeroJ. The rate constants obtained for thetFH; reaction on the new, highly accurate Stakerner
potential energy surface are in good agreement with previous experimental results.

|. Introduction

A great deal of progress has been made over the last few
years in the ability to calculate rate constants for chemical
reactions-both canonical (i.e., thermally averaged) and
microcanonicat-by quantum mechanical methods that are
direct, i.e., avoid having to solve the state-to-state reactive
scattering problem explicitly, yet alsmrrect i.e., in principle
exact (for a given potential energy surface); ref 1 reviews this
methodology and its recent applications. The approach, which
has qualitative vestiges and some of the efficiencies of transition-
state theory, involves only the short time quantum dynamics of
the system in the transition-state region of the potential surface;
one may think of it as the quantum analogue of the procedure
in classical mechanics of beginning trajectories on a dividing
surface in the transition-state region (with their initial conditions
sampled from a Boltzmann distribution) and following them
only so long as necessary to see which ones are reactive (i.e.
determining the “transmission coefficient”).

The thermal rate constant is obtained in this approach as the
time integral of a flux-flux autocorrelation functiorCsg(t),2*

k(T) = QM) [ dtCy(t) (1.1)

where

Cy(t) = tr[F(B)e e UM (1.2)
andQ,(T) is the reactant partition function per unit voluni,
is the Hamiltonian operator of the complete molecular system,
F is the symmetrized flux operator determined with respect to
a dividing surface separating reactants and produs) is
the Boltzmannized flux operator,

F(B) = e "M2Fe M2 (1.3)
andp = (ksT)~!. The evaluation of the flux correlation function
is especially efficient for the case of direct reactions, i.e., those
that do not involve the formation of a long-lived collision

complex, as has been well demonstrated by applications to the
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reactions D+ H, — DH + H,> O + HCl — OH + Cl.8 and CI
+ Hy, — HCI+H/7

In brief, the efficiency of the overall procedure stems from
two features: firstfF(3) is of low rank, i.e., has only a few
nonzero eigenfunctions, so they can be obtained extremely ef-
ficiently by the Lanczos algorith? F(8) is then represented

in terms of its eigenvectorg v} and eigenvalue§fy},

FB) =Y lomlE 3 (1.4)

so that the trace in eq 1.2 gives the correlation function as

Ci() = fnlZm®IF o) (1.5)
m
where|vm(t)0is the time-evolved flux eigenvector
’ o ()= ey [ (1.6)

In the time propagation, eq 1.6, an absorbing potential is added
to the Hamiltonian in the usual w&y16 to prevent unphysical
reflection from the edge of the grid or other finite basis
representation dfl. For the applications noted above, the basis
set used to represent the Hamiltonian ranged fredd0 to
~20 000, yet the rank of(8) was only ~12 and ~40,
respectively; it is only these relatively few vectors that must be
time-evolved (cf. eq 1.6). Furthermore, for direct reactions only
short time evolution is required, a time ofi (which is 27 fs
for T = 300 K), and this is the second feature that leads to the
efficiency of the overall procedure. In the language of transi-
tion-state theory, step-ithe Lanczos procedure to obtain the
eigenvectors and eigenvalues lef3)—may be thought of as
“finding the states of the activated complex”, and stegtte
time evolution of the eigenvectoras “determining the trans-
mission coefficient” for each of these states. The approach is
exact, however, and thus also applicable to nondirect, i.e.,
complex-forming, reactions, such!as
H+0O,=[HO,] —OH+ O a.7)
but long time evolution is required, e.g+1 ps for the H+ O,
reaction. Finally, it should be noted that the approach sum-
marized above has some significant features in common with
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the excellent work of Light and co-workéPsand that of 0.5
Manthé?® on this general topic, though there are also significant
differences.

This paper presents the results of such calculations of the
thermal rate constant for the much studied-FH, — HF + H
reaction using the most recently, and presumably most accurate,
ab initio potential energy surface available, that of Stark and
Werner?® The F+ H; reaction has long served as a benchmark
for atom—diatom scattering and has attracted a great deal of
interest in the past few years. In particular, recent experimental
measurements of the RLH photodetachment spectra to probe
the F+ H; transition-state regio?}, combined with theoretical
simulations?? have established that the transition state has a
bent geometry® This reaction is also significantly different
from the others noted above in that, though it is basically a
direct reaction, it has a very low barrier and is very exothermic.
These features have caused us to modify somewhat the g
procedure summarized above, as is described in section Il. The ©
specifics of the calculation, e.g., exact and approximate ways  _gs I ; ; ;
of treating total angular momentuth> 0, are described in
section Ill, and the results are presented and discussed in sectiong
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In attempting to apply the approach summarized in the 06 L o Ty T I
Introduction to the F- H, reaction at low temperature (even q@u)

30.0 K.)’ the imaginary tlmﬁ[? is sufficiently large that problems Figure 1. (a) Symmetric (solid line) and asymmetric (dashed line)
arise in constructing the eigenvalues/vectors of the Boltzman- gcyart barrier potentials. Eigenvector corresponding to the largest
nized flux operator of eq 1.3. This is because the Boltzmann gjgenvalue of the Boltzmannized flux operatoat 300 K is shown
operator is diffusive in character, and the strongly exothermic for the symmetric Eckart barrier (b) and for the asymmetric Eckart
region of the potential energy surface in the product (HH) barrier (c). The real part is given by the solid line and the imaginary
region tends to localize the e|genvect{)rsm[} in that region_ part by the dashed line. (d) Analogous eigenVeCtOT at 600 K for
This then leads to large recrossing contributions to the flux e @symmetric Eckart barrier.

correlation function, i.e., negative values@f(t), the integral

of which leads to large cancellation of the positive contribution;
cf. the classical simulation, where most trajectories that are

which gives the trace as

— iAth —iAth
begun in the HF+ H region will not go to F+ H,. This can Cir(t) = memelzm|e |V gl€ o
be partially remedied by locating the dividing surface farther m
out in the reactant (F- Hy) region, but this then requires longer _
propagation times. %fmf”fﬂmlum(t)mz (24)

The most useful way we have found for overcoming this
problem has been to make the imaginary (diffusive) time shorter \yhere|,,,(t)Dis the time-evolved vector
by employing a variant of the formulation used earlier (for other
reasons) by Park, Brown, and Light:note that since the v (0= e—iﬂt/h|y
Boltzmann operator and time evolution operator commute, eq m
1.2 can be written in the equivalent form

] (2.5)
The primary advantage of this version of the calculation is
— 1 [ BRIAL —BRIA PR —BRIAE BRI iFiUR that the eigenvectors of(6/2) have only half as long in
Ca() = e Fe €€ Fe € ] imaginary time to diffuse away from the dividing surface as do
the eigenvectors df(3). The dramatic effect this can have is
illustrated in Figure 1 for a one-dimensional Eckart potential.
Figure 1a shows the potential for a symmetric reaction, such as
H + H, — H; + H, and also for a strongly asymmetric one
A _ BRiAp A corresponding approximately to + H, — HF + H. Figure
Fpl2)=e Fe (2.2) 1b shows the real and imaginary parts of the eigenvétudr
which is also of low rank. The Lanczos algorithm is used as F(5) atT = 300 K for the symmetric case; the eigenvector is
before to find the nonzero eigenvalues and corresponding localized about the dividing surface (located in all cases at the

= t[E(B12)é M E(BI2)e (2.1)

whereF(3/2) is the “half-Boltzmannized” flux operator

eigenvectors of (8/2), which we denote here &} and{|vm} top of the barrier), with small peaks at the edge of the grid.
(and trust they will not be confused with the eigenvalues/vectors Figure 1c shows how different things are for the asymmetric
of F(B) in the Introduction). F(5/2) is then represented as case, where the eigenvector has diffused far away from the
dividing surface into the exothermic region. Figure 1d shows
F(BI2) = Z|Um[ﬂn@m| (2.3) the eigenvector for the asymmetric case fbr= 600 K,
- corresponding t@ — /2, and one sees that it is still very much

. localized about the dividing surface. The eigenvectots(6f2)
and this expansion is used for both operate($/2) in eq 2.1, are thus much more localized about a dividing surface through
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the transition-state region than those=g8), which is precisely
what we hoped to achieve.

There is, moreover, another bonus that one achieves by
utilizing both the formulation in the Introduction, eqs +.2.6,
and the above variation, egs 2:2.5, because the eigenvalues
and eigenvectors d¥(5/2) for temperaturd are those of(5)
for temperature 2. Thus the eigenvalugdn} and eigenvectors
{lvm of F(5/2) used to construct the flux correlation function
at temperaturd via eq 2.4, i.e.,

CrO) = fofo| By (O (2.62)
m,nT

can also be used in eq 1.5 to obtain the flux correlation function
at temperature @,

Corlt) = Y fZn(OIFlon(®)D (2.6b)

Therefore with one Boltzmannized flux eigenvalue/vector
calculation and one time evolution of these eigenvectors, one
is able to obtain the rate constantsTaand ZI' [One may,
though, need more terms to achieve convergence for the highe

the contribution from the smaller eigenvalues dies off only as
O(f) in eq 2.6b but a©(f?) in eq 2.6a.]

I1l. Details of Calculation

A. Coordinate System and Hamiltonian. The coordinates
and form of the Hamiltonian are essentially identical to those
used before in our Ct H, — HCI + H paper’ Thus we have
used the standard Jacobi coordinates of thé H, arrange-
ment: r is the H-H bond distanceR the distance fronf to
the center-of-mass of landy the angle betweenandR. In
terms of them, the total Hamiltonian in the body-fixed frame
can be written &8

N 1 1 Vo, 1 o _an
A=T.+T + + + (P -232+
R r (Z’MRZ 2mr2)] A 21,{82\ ) z
A+B)+V(Rry) (3.1a)
where
. hz 32
Th=—7— 3.1b
- R
T, = om a2 (3.1¢)
2 _hz(a_z teotyl - L 3 2) (3.1d)
¥y? W Ksinty ° '
A= (h— — cot yJ) (3.1e)
B=] (—hi—cot j) (3.1f)
- a,y V z "

Hereu is the reduced mass of F and,tndm that of the two
H atoms. J? is the total angular momentum operatdyijs the
projection operator of total angular momentum along the body-

IJJMK

temperature, eq 2.6b, than for the lower temperature because

Wang et al.

fixed axis R), andJ; andJ_ are raising and lowering operators.
These operators satisfy

F(D},)* = K20+ 1)(Dy,)* (3.2a)
JDh)* = AK(DY)* (3.2b)
3L (D" = AAS(Dier)* (3.2c)
and
Al =VI0+1)— KK+ 1) (3.2d)

whereD;, is the usual Wigner functioff, J the total angular
momentum quantum numbeW, the projection of total angular
momentum onto the space-fixed axis, afds projection onto
the body-fixed axisR).

Choosing the basis functions as a set of symmetrized Wigner
functions

1
V214 dyp)

whereo = 0 or 1 is the parity index for the total space inversion,
the matrix ofH with respect to this basis is diagonal JnM,
ando (and in fact independent dfl), but not inK:27

o= [Duk + (-1 Dy d* (3.3)

QMK'; olHIIMK; o= H'

= 5K,K{ Te+ T, +T,+V(Rry) +

K2 2
ZuRZ[J(J+ 1)—2K ]} —
ﬁ(aK’,K+lV 1 + 6K,OAjKj\+ + 6K’,K—1 1 + 6K,1A3Ki—)
(3.4a)
where
T,= (2; = + . n11 rz)AZ (3.4b)

The parityo determines the range &f andK', i.e. whenJ +

ois evenKK' = 0, ...,Jd and otherwis&K,K' = 1, ...,J. The

operators; andji are deflned by

2
—hz( +coty L — K ) (3.5a)
dy’ sty

— _pf[s 9 _

i, = h(iay K Coty) (3.5b)
and satisfy

i?PX(cosy) = H3(j + 1)PX(cosy) (3.62)
j Pl{(cosy) = hAy PI*!(cosy) (3.6h)

where PK(cos y) is the associated Legendre function. Note
that j2 andji are not the usual angular momentum operators;
they operate only on the associated Legendre function.
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The flux correlation function, and thus rate constant via its whereHj is theJ = 0 Hamiltonian,
integral in eq 1.1, is carried out for each value of total angular

momentumJ, yielding ky(T), and the total rate constant is ~ R ¥ R
P (A
2u pR? - 2m pr?
k(T) = 20(2\] + Dky(T) (3.7) 1 1\ % 5
= Al—— + ——||— + coty—| + V(r,Ry) (3.10b
(ZuRz 2mr2)(8y2 Vay) r,Ry) ( )

the 2 + 1 factor comes from the sum ovbf;, the projection
of total angular momentum on a space-fixed axis, on which the and EX(r,Ry) is the rotational energy of a symmetric top
dynamics in free space does not depend. As discussed(determined by geometmyRyy),
thoroughly in our previous workon the CI+ H; reaction, one
actually needs to calculatg(T) only at a modest number of K 1 2
widely spaced values afand can interpolate quite accurately Erol"RY) =SIANRY) + BIRy)IIE+ 1) — KT +
to carry out the a_lbove sum; the_ reader should see ref 7 for a C(r,R,y)Kz (3.10¢)
more complete discussion of this.

B. The J-Shifting Approximation. The above section
describes the exact treatment of total angular momerum
0, but there are approximate treatments that are often reasonabl
accurate. The simplest of these is fghifting approximatiors?
which assumes that rotational motion is separable from that of 1 1 ) )
the other (8! — 6) degrees of freedom and furthermore that it |c(fRy) = E(ﬂRZ +mr) - E[CMRZ) + (mPy? +
is that of the rigid molecular system at some reference geometry 12
(typically that of the transition state). In this case the rotational 2uRfmr* cos 2] (3.11a)
energy is simply a constant added to thes 0 Hamiltonian, 1 1
and one can readily show that the rate constant is given by  I(r,Ry) = z(uRz +mP) + E[(pch)2 + (mP)* +

whereA, B, andC are given in terms of the principal moments
of inertia in the usual way (i.eA = h%/2l, etc.). For the present
Yhree-atom system these moments of inertia are

K(T) = ky=o(T) QroT) (38) 2uRem cos 21 (3.11b)
where Q, is the rotational partition function for the rigid In(rRy) =lg+lc=uR+ mr (3.11c)
molecular system at the reference geometry. If this is a
symmetric top (or nearly so), then Ef('ft(r,R,y) is thus essentially a centrifugal potential that adds

to theJ = 0 Hamiltonian, eq 3.10b. This approximation has
+ ) g been rediscovered more recently by Bowfigtermed by him
Qo) = ZD(ZJ +1) z e (3.92)  the “adiabatic rotation approximation”) and used quite success-
- K== fully for determining energies of bound and metastable states
of the HCO system and has also been applied successfully by
us’ in the thermal rate constant calculation for{£H, reaction.
+_ oF 2 2 One must thus carry out calculations of the rate constant
Ex =B+ 1)—-K]+CK (3.9b) kik(T) with the Hamiltonian of eq 3.10a for at least a modest
number of {,K) values-each of which is essentially the
difficulty of the J = 0 calculatior-and then the total rate
constant is

where the rotational energy levels are

B* and C* being the appropriate rotation constang& &
hZIZIE, etc.). For the F+ H; transition state we find8* =
2.340 cnt! andC* = 98.17 cntl.

With this approximation one thus only has to calcule(d) _
for J = 0 and then multiply by a rotational partition function, k(T) = ZO(ZJ + l)ZkJK(T) (3.12)
a great simplification compared to the exact treatment of

0 As before, thed and K dependence oky(T) is usually

'C. Principal Axis Helicity Conserving Approximation. sufficiently simple that one can interpolate a small number of
Since thelJ-shifting approximation takes into account rotational (J,K) values quite well in order to carry out the sum in eq 3.12.

motion at only one reference geometry, it may give a poor result * - Basis Set. A discrete variable representation (DVRP4
if the dynamics becomes more nonlocalized (as is typically the a5 heen used as the basis set to represent the Hamiltonian of
case for higher temperatures). A better approximation is e F 4+ H, system. Specifically, for the radial degrees of
therefore one that takes into account the coordinate dependencgeedom (j.e.R andr), the sinc-function DVR developed by
of the rotation constants, i.e., centrifugal distortion, while still - co|pert and Mille#is used. For the angular degree of freedom
neglecting Coriolis coupling (thi = K’ coupling inthe exact  associated Legendre polynomials are chosen as a finite basis
Hamllt(_)mar_] of section Ill.A). This is the_ helicity-conserving representation (FBR) and then transformed to a DVR in the
approximation (HCAY? ";‘g‘d the best HCA is the one suggested 5yal way. To make the transformation simple, we discretize
by McCurdy and Miller} which chooses the body-fixed axis  these associated Legendre polynomials using Galsgendre
(the component of total angular momentum about which is guadrature (using more quadrature points than continuous
assumed to be conserved) as the most unique instantaneougnctions), as done previously.The DVR is then generated
principal axes (PA) of the molecular system. The Hamiltonian py, anplving the corresponding rectangular transformation matrix.
for this principal axis helicity-conserving approximation (PA/ The parametersls, N,, Ve, and Ryax Serve to define the
HCA) is basis set. The radial sinc-function DVR has evenly spaced
K K points with the grid spacingx related to the maximum kinetic
H™ = Hy + E(r.RY) (3.10a) energy in the problem. The grid constahl, specifies the
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number of points per thermal de Broglie wavelength for the whereh(s) is the step function evaluated at tjite DVR point,

radial coordinates: andT; is the kinetic energy matrix. The dividing surface used
in this study is defined bg = R — X = 0, whereX is taken to
_2n ZukgT)\ 12 be between 4.0 and 5.0 au. We note that the exoergicity of
Ax= N_B }2 (3.13) this reaction dictates that the flux dividing surface be moved

somewhat into the reactant valley for the reasons given in section

For the F+ H, reaction we find\g = 16—26 yields converged Il for the splitting up of the Boltzmannized flux operator.
results; this is somewhat larger than we have found for other ~G. Absorbing Potential. The absorbing potential is taken
reactions due to the large exoergicity. The number of DVR to be a quartic function of the coordinaelefined in section
points for the angular coordinate is given Ny. For the] = 11.D:
0 and PA/HCA calculationN, is taken to be 1416, whereas
for the exact calculation ad > 0 caseN, is taken to be 20. S—% |4
The DVR basis is determined by first laying down a “raw” € = /‘L(%—_SO)
grid in the Jacobi coordinates of thetFH, arrangement, which o
is then truncated by three criteria. (1) An energy cutoff is
used: if the potential energy at a DVR point is greater than
Veur the point is discarded (hekgy ~ 1.3—1.8 eV); (2) in the
asymptotic valleys of the reactant and product arrangements
points withs > 4 au ors < —4 au are neglected, whese=
H—n — r'e—y + X and 1.6 au< X < 2.6 au define the flux
dividing surface as discussed in section IIl.F; and (3) the first
n points in theR-grid are discarded. This is possible because Calculations of the thermal rate constants for the F, —
insertion of F into the K bond is not allowed by the potential HF + H reaction have been carried out using the methodology
energy surface) is a convergence parameter in the calculations, described in sections Il and Il over the temperature range-300

(3.16)

We have found this form works well and is easy to converge
with respect to the parametetssy, andsmax Typically A =
1.5-2.0 eV andy is chosen such that approximately-300%

of the grid points are in absorbing region.

IV. Results and Discussion

typically taken to be 4 or 5. 700 K. The exact treatment of tlle> 0 contribution (section

E. Time Propagation. Due to the large exoergicity of the 1Il.A) was carried out at two temperatures (300 and 600 K) in
F + H reaction, it is necessary to use very accurate propagators.order to calibrate the simpler JSA (section 111.B) and PA/HCA
In our calculation, we applied the Chebyshev propagdafor (section 111.C) approaches that were then used for more values

the imaginary time (i.e., the Boltzmann operator) propagation, of T. As usuaP® the rate constant given by eq 1.1 was also
and the sixth-order symplectic integratofor the real time divided by the factor,

propagation. Both of these are of higher order than the split

operatof” and thus can achieve more accurate results with (N =2+ g MkeT (4.1)
moderate numerical effort. Furthermore, these two propagators el '
are easily implemented, with the primary computational task
being the Hamiltonian matrix acting on a vector. This is
particularly convenient for the exadt> O rate calculation, since

which arises from the ratio of electronic partition functions,

whereA = 404 cnt! is the spir-orbit splitting®4° of F(2P)).

from eq 3.4 the Hamiltonian matrix has a simple block The rate constants presented her_e are numerl_cal_ly converged to
at least~10%. The accuracy is primarily limited by the

tridiagonal structure, and thus its operation on a vector scales . S . S
linearly versus the maximum angular momentum projection onto exoergicity of the reaction; it could be improved by significantly

the body-fixed axis,Kmax In the previous split-operator m_ci;]easing the de(;l_sity of ItD_\/R;hgrid ‘?Oirllt‘:’_ (i.et._, increashig
propagation for CH- H, reaction] each |,K) block had to be with a corresponding cost in the calculation ime.

diagonalized, and thus the propagator for angular degree of Figure 2 §hows the even and Odd. party= 0 flux—flux
freedom was dense and scaled quadraticalkin. For the F autocorrelation functions for the reaction at {ay 300 K and

+ H, reaction, we found thamax = 4 was adequate to obtain  (P) T =600 K. They were obtained by propagating 10 and 12

converged results, so that the symplectic integrator is much more€/9€nvectors, respectively, of the half-Boltzmannized flux
efficiengt than the split-operato?f P g operator (while the size of the DVR basis was 1800 and 2000

F. Flux Operator and Dividing Surface. The form for grid points, respectively)._ For both temperatures the propaga_tion
the flux operator used in this work is time must be'rather long in ord_er to capture the slowly decay_lng,
long time tail of the correlation function. The even parity
R TN correlation function converges to zero#825 fs at 300 K and
F= E[H,h(s(q))] (3.14) in ~90 fs at 600 K. Note that in both cases the odd parity
correlation function decays to zero significantly faster<it75
where the dividing surface separating reactants and products isand~50 for 300 and 600 K, respectively). As discussed above,
defined by the equatios(q) = 0 andh(s) is the Heaviside step  the flux dividing surface is placed somewhat into the reactant
function, which is zero fos < 0 and 1 fors > 0. This is not valley, and thus amplitude reflected from the barrier (even
the only possible expression fbr and the different choices do ~ amplitude that never reaches the transition state and is therefore
not all possess the same numerical properties in a finite basisnot transition state theory “violating”) recrosses the dividing
representation. This form, however, is most easily incorporated surface.
in a multidimensional problem and can be conveniently applied It is worth noting from Figure 2 that the odd and even parity

using sparse matrix multiplication techniques. rates will obviously be quite different. This is in contrast to
The matrix elements of the flux operator in the DVR are the Cl+ H; reaction! which has a large barrier for internal
easily evaluated as rotation of K in the transition state and thus has equal rates
_ for even and odd parity. This is a reflection of the fact that the
| barrier to internal rotation of iHat the F-+H, transition state is
F.=2T.[h(s)—h 3.15 .
W h i IN(s) )l ( ) quite small.
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Figure 2. Even (solid line) and odd (dashed line) parity ftuflux
autocorrelation functions for the + H; reaction at (a)f = 300 K and
(b) T = 600 K.

TABLE 1: Comparison of Thermal Rate Constants from
Exact J = 0 Calculations with Those Using the PA/HCA and
J-Shifting Approximations to Include the Effect of J = 0
Total Angular Momentum for the Three-Dimensional F +

H, Reaction in Units of cm? molecule ! s

k(T)/107%3

temp (K) J-shifting PA/HCA exact

300 2.52 1.93 2.26
350 3.48 2.58
400 4.42 3.27
450 5.08 3.74
500 5.74 4.16

600 7.32 5.27 5.68
700 8.62 6.19

Table 1 compares the total rate constants from the ekact

J. Phys. Chem. A, Vol. 102, No. 47, 1998377

k(T) (em’ molecule” s

T R
10 1.5 2.0 25 3.0 35

1000/T (1/K)

Figure 3. Arrhenius plot of the thermal rate constant for the-FH,
reaction. The present exact results are shown by the solid line with
solid circles, the present PA/HCA results by the solid line witls,

the theoretical results of Rosenman et al. by the-dlaished line and

solid diamonds, the experimental results of Wurzberg and Houston by
the dashed line and open squares, the experimental results of Stevens
et al. by the long dashed line and open triangles, and the experimental
results of Heidner et al. by the dotted line and open circles. (The lines
are intended simply as a guide to the eye.)

In fact, theJ = O rate is seen talecreaseabove 400 K.
However, the total rate constant increases with increasing
temperature. Thus, the qualitative Arrhenius behavior of the
total rate is dominated by the effects of overall rotation.
Several other dynamics calculations have been carried out
on this same StarkWerner (SW) surface, including quasiclas-
sical trajector§! and quantum scattering studis.We refer
the reader to the recent excellent review by Manolopdéios
this reaction. Of particular interest in the context of this paper
are the calculations by Rosenman effalThey calculated
reactive cross sections and thermal rate constants on the SW
surface using the helicity-conserving approximation (HCA) to
include nonzero total angular momentum. They obtained results
in reasonably good agreement with the experimentally measured
rates of Wurzberg and Housttrand Stevens et 4. Another
experimental study by Heidner et*alhas reported rate constants
that are~20% larger than the two experiments just mentioned,
but agree very well with the calculations of Rosenman &t al.
atT = 298 K.
There are, however, some questions in applying the conven-
tional HCA—which uses th& axis as the body-fixed axisto
this reaction sincéR is not a very good “almost” symmetric
top axis for this molecular system. Indeed, we found in our
previous study of the similar reaction CH H, — HCI + H
that the conventional HCA overestimated the rates20—
40%, a result even worse than the simpighifting approxima-
tion. The PA/HCA, which uses one of the instantaneous

0 calculation with those obtained using the simpler JSA and principal axes as the body-fixed axis for the purpose of making
PA/HCA approaches. Note that the JSA rate constants arethe helicity-conserving approximation, is thus preferred.

greater than the exact rates, while the PA/HCA gives values

Figure 3 is an Arrhenius plot of the present results compared

that are lower. Overall, the agreement is reasonably good,with those from previous experimefts* and theoretical

particularly for the PA/HCA rates, which are within 15% of

the exact rate at 300 K and within 8% at 600 K. Thshifting

calculations®® The numerical values of the rates are given in
Table 2. The conventional HCA rates by Rosenman é¢ al.

rates are within 12 and 30% of the exact result at 300 and 600are larger (by~30%) at all temperatures than the present exact
K, respectively. The accuracy of these approximate approachegreatment of thel > 0 case, indicating that HCA is poorer than
underscores their usefulness, especially when one considers th® A/[HCA or even simplel-shifting approximation and is thus
large savings in computational effort they provide. An interest- not as useful an approximation for treating this reaction.

ing feature of the rates presented here is that we observe a very The rate constants obtained from the exact treatment of the
weak dependence of tlle= 0 rate constant on the temperature. J > 0 case described in this paper are in excellent agreement
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TABLE 2: Experimental and Theoretical Total Thermal
Rate Constants for the Three-Dimensional F+ H, Reaction
in Units of cm3 molecule™? st

K(T)/10- 12
temp (K) WH  SBAP HBGM¢  RHPB present
298 2.33 2.48 2.93 2.81 2.26
350 2.89 3.14 3.94 3.35
400 4.88 3.80
450 5.76
500 6.57
600 8.01 5.68
700 9.23

aWurzberg and Houston; ref 43Stevens, Brune, and Anderson;
ref 44.¢Heidner, Bott, Gardner, and Melzer; ref 4Rosenman,
Hochman-Kowal, Persky, and Baer; ref 3&00 K.

(within 10%) with the experimental results of both Wurzberg
and Houstof? and Stevens et &f. The rate constants experi-
mentally measured by Heidner et“alare larger than all the

Wang et al.

Laboratory, and also by National Science Foundation Grant No.
CHE 94-22559.
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