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We present “direct” calculations of the thermal rate constant for the F+ H2 reaction. The rate is obtained
from the time integral of the flux-flux autocorrelation function, which is efficiently evaluated by taking
advantage of the low rank of the half-Boltzmannized flux operator. Total rate constants are obtained from
exact total angular momentumJ * 0 calculations and compared with approximate approaches for including
nonzeroJ. The rate constants obtained for the F+ H2 reaction on the new, highly accurate Stark-Werner
potential energy surface are in good agreement with previous experimental results.

I. Introduction

A great deal of progress has been made over the last few
years in the ability to calculate rate constants for chemical
reactionssboth canonical (i.e., thermally averaged) and
microcanonicalsby quantum mechanical methods that are
direct, i.e., avoid having to solve the state-to-state reactive
scattering problem explicitly, yet alsocorrect, i.e., in principle
exact (for a given potential energy surface); ref 1 reviews this
methodology and its recent applications. The approach, which
has qualitative vestiges and some of the efficiencies of transition-
state theory, involves only the short time quantum dynamics of
the system in the transition-state region of the potential surface;
one may think of it as the quantum analogue of the procedure
in classical mechanics of beginning trajectories on a dividing
surface in the transition-state region (with their initial conditions
sampled from a Boltzmann distribution) and following them
only so long as necessary to see which ones are reactive (i.e.,
determining the “transmission coefficient”).

The thermal rate constant is obtained in this approach as the
time integral of a flux-flux autocorrelation functionCff(t),2-4

where

andQr(T) is the reactant partition function per unit volume,Ĥ
is the Hamiltonian operator of the complete molecular system,
F̂ is the symmetrized flux operator determined with respect to
a dividing surface separating reactants and products,F̂(â) is
the Boltzmannized flux operator,

andâ ) (kBT)-l. The evaluation of the flux correlation function
is especially efficient for the case of direct reactions, i.e., those
that do not involve the formation of a long-lived collision
complex, as has been well demonstrated by applications to the

reactions D+ H2 f DH + H,5 O + HCl f OH + Cl,6 and Cl
+ H2 f HCl + H.7

In brief, the efficiency of the overall procedure stems from
two features: first,F̂(â) is of low rank, i.e., has only a few
nonzero eigenfunctions, so they can be obtained extremely ef-
ficiently by the Lanczos algorithm;8,9 F̂(â) is then represented
in terms of its eigenvectors{|Vm〉} and eigenvalues{fm},

so that the trace in eq 1.2 gives the correlation function as

where|Vm(t)〉 is the time-evolved flux eigenvector

In the time propagation, eq 1.6, an absorbing potential is added
to the Hamiltonian in the usual way10-16 to prevent unphysical
reflection from the edge of the grid or other finite basis
representation ofĤ. For the applications noted above, the basis
set used to represent the Hamiltonian ranged from∼700 to
∼20 000, yet the rank ofF̂(â) was only ∼12 and ∼40,
respectively; it is only these relatively few vectors that must be
time-evolved (cf. eq 1.6). Furthermore, for direct reactions only
short time evolution is required, a time of∼pâ (which is 27 fs
for T ) 300 K), and this is the second feature that leads to the
efficiency of the overall procedure. In the language of transi-
tion-state theory, step 1sthe Lanczos procedure to obtain the
eigenvectors and eigenvalues ofF̂(â)smay be thought of as
“finding the states of the activated complex”, and step 2sthe
time evolution of the eigenvectorssas “determining the trans-
mission coefficient” for each of these states. The approach is
exact, however, and thus also applicable to nondirect, i.e.,
complex-forming, reactions, such as17

but long time evolution is required, e.g.,∼1 ps for the H+ O2

reaction. Finally, it should be noted that the approach sum-
marized above has some significant features in common with
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k(T) ) Qr(T)-1∫0

∞
dtCff(t) (1.1)

Cff(t) ≡ tr[F̂(â)eiĤt/pF̂e-iĤt/p] (1.2)

F̂(â) ≡ e-âĤ/2F̂e-âĤ/2 (1.3)

F̂(â) ) ∑
m

|Vm〉fm〈Vm| (1.4)

Cff(t) ) ∑
m

fm〈Vm(t)|F̂|Vm(t)〉 (1.5)

|Vm(t)〉 ) e-iĤt/p|Vm〉 (1.6)

H + O2 h [HO2] f OH + O (1.7)
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the excellent work of Light and co-workers18 and that of
Manthe19 on this general topic, though there are also significant
differences.

This paper presents the results of such calculations of the
thermal rate constant for the much studied F+ H2 f HF + H
reaction using the most recently, and presumably most accurate,
ab initio potential energy surface available, that of Stark and
Werner.20 The F+ H2 reaction has long served as a benchmark
for atom-diatom scattering and has attracted a great deal of
interest in the past few years. In particular, recent experimental
measurements of the FH2

- photodetachment spectra to probe
the F+ H2 transition-state region,21 combined with theoretical
simulations,22 have established that the transition state has a
bent geometry.23 This reaction is also significantly different
from the others noted above in that, though it is basically a
direct reaction, it has a very low barrier and is very exothermic.
These features have caused us to modify somewhat the
procedure summarized above, as is described in section II. The
specifics of the calculation, e.g., exact and approximate ways
of treating total angular momentumJ > 0, are described in
section III, and the results are presented and discussed in section
IV.

II. Theory

In attempting to apply the approach summarized in the
Introduction to the F+ H2 reaction at low temperature (even
300 K), the imaginary timepâ is sufficiently large that problems
arise in constructing the eigenvalues/vectors of the Boltzman-
nized flux operator of eq 1.3. This is because the Boltzmann
operator is diffusive in character, and the strongly exothermic
region of the potential energy surface in the product (HF+ H)
region tends to localize the eigenvectors{|Vm〉} in that region.
This then leads to large recrossing contributions to the flux
correlation function, i.e., negative values ofCff(t), the integral
of which leads to large cancellation of the positive contribution;
cf. the classical simulation, where most trajectories that are
begun in the HF+ H region will not go to F+ H2. This can
be partially remedied by locating the dividing surface farther
out in the reactant (F+ H2) region, but this then requires longer
propagation times.

The most useful way we have found for overcoming this
problem has been to make the imaginary (diffusive) time shorter
by employing a variant of the formulation used earlier (for other
reasons) by Park, Brown, and Light:18 note that since the
Boltzmann operator and time evolution operator commute, eq
1.2 can be written in the equivalent form

whereF̂(â/2) is the “half-Boltzmannized” flux operator

which is also of low rank. The Lanczos algorithm is used as
before to find the nonzero eigenvalues and corresponding
eigenvectors ofF̂(â/2), which we denote here as{fm} and{|Vm〉}
(and trust they will not be confused with the eigenvalues/vectors
of F̂(â) in the Introduction). F̂(â/2) is then represented as

and this expansion is used for both operatorsF̂(â/2) in eq 2.1,

which gives the trace as

where|Vm(t)〉 is the time-evolved vector

The primary advantage of this version of the calculation is
that the eigenvectors ofF̂(â/2) have only half as long in
imaginary time to diffuse away from the dividing surface as do
the eigenvectors ofF̂(â). The dramatic effect this can have is
illustrated in Figure 1 for a one-dimensional Eckart potential.
Figure 1a shows the potential for a symmetric reaction, such as
H + H2 f H2 + H, and also for a strongly asymmetric one
corresponding approximately to F+ H2 f HF + H. Figure
1b shows the real and imaginary parts of the eigenvector24 of
F̂(â) at T ) 300 K for the symmetric case; the eigenvector is
localized about the dividing surface (located in all cases at the
top of the barrier), with small peaks at the edge of the grid.
Figure 1c shows how different things are for the asymmetric
case, where the eigenvector has diffused far away from the
dividing surface into the exothermic region. Figure 1d shows
the eigenvector for the asymmetric case forT ) 600 K,
corresponding toâ f â/2, and one sees that it is still very much
localized about the dividing surface. The eigenvectors ofF̂(â/2)
are thus much more localized about a dividing surface through

Cff(t) ) tr[e-âĤ/4F̂e-âĤ/4eiĤt/pe-âĤ/4F̂e-âĤ/4e-iĤt/p]

≡ tr[F̂(â/2)eiĤt/pF̂(â/2)e-iĤt/p] (2.1)

F̂(â/2) ) e-âĤ/4F̂e-âĤ/4 (2.2)

F̂(â/2) ) ∑
m

|Vm〉fm〈Vm| (2.3)

Figure 1. (a) Symmetric (solid line) and asymmetric (dashed line)
Eckart barrier potentials. Eigenvector corresponding to the largest
eigenvalue of the Boltzmannized flux operator atT ) 300 K is shown
for the symmetric Eckart barrier (b) and for the asymmetric Eckart
barrier (c). The real part is given by the solid line and the imaginary
part by the dashed line. (d) Analogous eigenvector atT ) 600 K for
the asymmetric Eckart barrier.

Cff(t) ) ∑
m,m′

fmfm′〈Vm|eiĤt/p|Vm′〉〈Vm′|e-iĤt/p|Vm〉

) ∑
m,m′

fmfm′|〈Vm′|Vm(t)〉|2 (2.4)

|Vm(t)〉 ) e-iĤt/p|Vm〉 (2.5)

Thermal Rate Constants for F+ H2 f HF + F J. Phys. Chem. A, Vol. 102, No. 47, 19989373



the transition-state region than those ofF̂(â), which is precisely
what we hoped to achieve.

There is, moreover, another bonus that one achieves by
utilizing both the formulation in the Introduction, eqs 1.2-1.6,
and the above variation, eqs 2.1-2.5, because the eigenvalues
and eigenvectors ofF̂(â/2) for temperatureT are those ofF̂(â)
for temperature 2T. Thus the eigenvalues{fm} and eigenvectors
{|Vm〉} of F̂(â/2) used to construct the flux correlation function
at temperatureT via eq 2.4, i.e.,

can also be used in eq 1.5 to obtain the flux correlation function
at temperature 2T,

Therefore with one Boltzmannized flux eigenvalue/vector
calculation and one time evolution of these eigenvectors, one
is able to obtain the rate constants atT and 2T! [One may,
though, need more terms to achieve convergence for the higher
temperature, eq 2.6b, than for the lower temperature because
the contribution from the smaller eigenvalues dies off only as
O(f) in eq 2.6b but asO(f2) in eq 2.6a.]

III. Details of Calculation

A. Coordinate System and Hamiltonian. The coordinates
and form of the Hamiltonian are essentially identical to those
used before in our Cl+ H2 f HCl + H paper.7 Thus we have
used the standard Jacobi coordinates of the F+ H2 arrange-
ment: r is the H-H bond distance,R the distance fromF to
the center-of-mass of H2, andγ the angle betweenr andR. In
terms of them, the total Hamiltonian in the body-fixed frame
can be written as25

where

Hereµ is the reduced mass of F and H2, andm that of the two
H atoms. Ĵ2 is the total angular momentum operator,Ĵz is the
projection operator of total angular momentum along the body-

fixed axis (R), andĴ+ andĴ- are raising and lowering operators.
These operators satisfy

and

whereDMK
J is the usual Wigner function,26 J the total angular

momentum quantum number,M the projection of total angular
momentum onto the space-fixed axis, andK its projection onto
the body-fixed axis (R).

Choosing the basis functions as a set of symmetrized Wigner
functions

whereσ ) 0 or 1 is the parity index for the total space inversion,
the matrix ofĤ with respect to this basis is diagonal inJ, M,
andσ (and in fact independent ofM), but not inK:27

where

The parityσ determines the range ofK andK′, i.e. whenJ +
σ is even,K,K′ ) 0, ...,J and otherwiseK,K′ ) 1, ...,J. The
operatorsĵ2 and ĵ( are defined by

and satisfy

where Pj
K(cos γ) is the associated Legendre function. Note

that ĵ2 and ĵ( are not the usual angular momentum operators;
they operate only on the associated Legendre function.

CT(t) ) ∑
m,m′

fmfm′|〈Vm′|Vm(t)〉|2 (2.6a)

C2T(t) ) ∑
m

fm〈Vm(t)|F̂|Vm(t)〉 (2.6b)

Ĥ ) T̂R + T̂r + ( 1

2µR2
+ 1

2mr2) ĵ2 + 1

2µR2
(Ĵ2 - 2Ĵz

2 +

Â + B̂) + V̂(R,r,γ) (3.1a)

T̂R ) - p2

2µ
∂

2

∂R2
(3.1b)

T̂r ) - p2

2m
∂

2

∂r2
(3.1c)

ĵ2 ) -p2( ∂
2

∂γ2
+ cot γ ∂

∂γ
- 1

p2 sin2 γ
Ĵz

2) (3.1d)

Â ) Ĵ+(p ∂

∂γ
- cot γĴz) (3.1e)

B̂ ) Ĵ-(-p
∂

∂γ
- cot γĴz) (3.1f)

Ĵ2(DMK
J )* ) p2J(J + 1)(DMK

J )* (3.2a)

Ĵz(DMK
J )* ) pK(DMK

J )* (3.2b)

Ĵ((DMK
J )* ) pΛJK

q (DMK(1
J )* (3.2c)

ΛJK
q ) xJ(J + 1) - K(K ( 1) (3.2d)

|JMK;σ〉 ≡ 1

x2(1 + δK0)
[DMK

J + (-1)J+K+σDM-K
J ]* (3.3)

〈JMK′; σ|Ĥ|JMK;σ〉 ≡ HK′,K
J,σ

) δK′,K{T̂R + T̂r + T̂γ + V̂(R,r,γ) +

p2

2µR2
[J(J + 1) - 2K2]} -

p

2µR2
(δK′,K+1x1 + δK,0ΛJK

+ ĵ+ + δK′,K-1x1 + δK,1ΛJK
- ĵ-)

(3.4a)

T̂γ ) ( 1

2µR2
+ 1

2mr2) ĵ2 (3.4b)

ĵ2 ) -p2( ∂
2

∂γ2
+ cot γ ∂

∂γ
- K2

sin2 γ) (3.5a)

ĵ( ) -p(( ∂

∂γ
- K cot γ) (3.5b)

ĵ2Pj
K(cosγ) ) p2j(j + 1)Pj

K(cosγ) (3.6a)

ĵ(Pj
K(cosγ) ) pΛjK

( Pj
K(1(cosγ) (3.6b)
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The flux correlation function, and thus rate constant via its
integral in eq 1.1, is carried out for each value of total angular
momentumJ, yielding kJ(T), and the total rate constant is

the 2J + 1 factor comes from the sum overMJ, the projection
of total angular momentum on a space-fixed axis, on which the
dynamics in free space does not depend. As discussed
thoroughly in our previous work7 on the Cl+ H2 reaction, one
actually needs to calculatekJ(T) only at a modest number of
widely spaced values ofJ and can interpolate quite accurately
to carry out the above sum; the reader should see ref 7 for a
more complete discussion of this.

B. The J-Shifting Approximation. The above section
describes the exact treatment of total angular momentumJ >
0, but there are approximate treatments that are often reasonably
accurate. The simplest of these is theJ-shifting approximation,28

which assumes that rotational motion is separable from that of
the other (3N - 6) degrees of freedom and furthermore that it
is that of the rigid molecular system at some reference geometry
(typically that of the transition state). In this case the rotational
energy is simply a constant added to theJ ) 0 Hamiltonian,
and one can readily show that the rate constant is given by

where Qrot
q is the rotational partition function for the rigid

molecular system at the reference geometry. If this is a
symmetric top (or nearly so), then

where the rotational energy levels are

Bq and Cq being the appropriate rotation constants (Bq )
p2/2IB

q, etc.). For the F+ H2 transition state we findBq )
2.340 cm-1 andCq ) 98.17 cm-1.

With this approximation one thus only has to calculatekJ(T)
for J ) 0 and then multiply by a rotational partition function,
a great simplification compared to the exact treatment ofJ >
0.

C. Principal Axis Helicity Conserving Approximation.
Since theJ-shifting approximation takes into account rotational
motion at only one reference geometry, it may give a poor result
if the dynamics becomes more nonlocalized (as is typically the
case for higher temperatures). A better approximation is
therefore one that takes into account the coordinate dependence
of the rotation constants, i.e., centrifugal distortion, while still
neglecting Coriolis coupling (theK * K′ coupling in the exact
Hamiltonian of section III.A). This is the helicity-conserving
approximation (HCA),29 and the best HCA is the one suggested
by McCurdy and Miller,30 which chooses the body-fixed axis
(the component of total angular momentum about which is
assumed to be conserved) as the most unique instantaneous
principal axes (PA) of the molecular system. The Hamiltonian
for this principal axis helicity-conserving approximation (PA/
HCA) is

whereĤ0 is theJ ) 0 Hamiltonian,

and Erot
JK(r,R,γ) is the rotational energy of a symmetric top

(determined by geometryr,R,γ),

whereA, B, andC are given in terms of the principal moments
of inertia in the usual way (i.e.,A ) p2/2IA, etc.). For the present
three-atom system these moments of inertia are

Erot
JK(r,R,γ) is thus essentially a centrifugal potential that adds

to theJ ) 0 Hamiltonian, eq 3.10b. This approximation has
been rediscovered more recently by Bowman31 (termed by him
the “adiabatic rotation approximation”) and used quite success-
fully for determining energies of bound and metastable states
of the HCO system and has also been applied successfully by
us7 in the thermal rate constant calculation for Cl+ H2 reaction.

One must thus carry out calculations of the rate constant
kJK(T) with the Hamiltonian of eq 3.10a for at least a modest
number of (J,K) valuesseach of which is essentially the
difficulty of the J ) 0 calculationsand then the total rate
constant is

As before, theJ and K dependence ofkJK(T) is usually
sufficiently simple that one can interpolate a small number of
(J,K) values quite well in order to carry out the sum in eq 3.12.

D. Basis Set.A discrete variable representation (DVR)32-34

has been used as the basis set to represent the Hamiltonian of
the F + H2 system. Specifically, for the radial degrees of
freedom (i.e.,R and r), the sinc-function DVR developed by
Colbert and Miller34 is used. For the angular degree of freedom,
associated Legendre polynomials are chosen as a finite basis
representation (FBR) and then transformed to a DVR in the
usual way. To make the transformation simple, we discretize
these associated Legendre polynomials using Gauss-Legendre
quadrature (using more quadrature points than continuous
functions), as done previously.7 The DVR is then generated
by applying the corresponding rectangular transformation matrix.

The parametersNB, Nγ, Vcut, and Rmax serve to define the
basis set. The radial sinc-function DVR has evenly spaced
points with the grid spacing∆x related to the maximum kinetic
energy in the problem. The grid constant,NB, specifies the

k(T) ) ∑
J)0

(2J + l)kJ(T) (3.7)

k(T) ) kJ)0(T) Qrot
q (T) (3.8)

Qrot
q (T) ) ∑

J)0

(2J + 1) ∑
K)-J

J

e-âEJK
q

(3.9a)

EJK
q ) Bq[J(J + 1) - K2] + CqK2 (3.9b)

ĤJK ) Ĥ0 + Erot
JK(r,R,γ) (3.10a)

Ĥ0 ) - p2

2µ
∂

2

∂R2
- p2

2m
∂

2

∂r2
-

p2( 1

2µR2
+ 1

2mr2)( ∂
2

∂γ2
+ cot γ ∂

∂γ) + V(r,R,γ) (3.10b)

Erot
JK(r,R,γ) ) 1

2
[A(r,R,γ) + B(r,R,γ)][J(J + 1) - K2] +

C(r,R,γ)K2 (3.10c)

IC(r,R,γ) ) 1
2
(µR2 + mr2) - 1

2
[(µR2)2 + (mr2)2 +

2µR2mr2 cos 2γ]1/2 (3.11a)

IB(r,R,γ) ) 1
2
(µR2 + mr2) + 1

2
[(µR2)2 + (mr2)2 +

2µR2mr2 cos 2γ]1/2 (3.11b)

IA(r,R,γ) ) IB + IC ) µR2 + mr2 (3.11c)

k(T) ) ∑
J)0

(2J + 1)∑
K

kJK(T) (3.12)
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number of points per thermal de Broglie wavelength for the
radial coordinates:

For the F+ H2 reaction we findNB ) 16-26 yields converged
results; this is somewhat larger than we have found for other
reactions due to the large exoergicity. The number of DVR
points for the angular coordinate is given byNγ. For theJ )
0 and PA/HCA calculation,Nγ is taken to be 14-16, whereas
for the exact calculation ofJ > 0 case,Nγ is taken to be 20.

The DVR basis is determined by first laying down a “raw”
grid in the Jacobi coordinates of the F+ H2 arrangement, which
is then truncated by three criteria. (1) An energy cutoff is
used: if the potential energy at a DVR point is greater than
Vcut, the point is discarded (hereVcut ≈ 1.3-1.8 eV); (2) in the
asymptotic valleys of the reactant and product arrangements
points withs > 4 au ors < -4 au are neglected, wheres )
rH-H - rF-H + X and 1.6 au< X < 2.6 au define the flux
dividing surface as discussed in section III.F; and (3) the first
n points in theR-grid are discarded. This is possible because
insertion of F into the H2 bond is not allowed by the potential
energy surface,n is a convergence parameter in the calculations,
typically taken to be 4 or 5.

E. Time Propagation. Due to the large exoergicity of the
F + H2 reaction, it is necessary to use very accurate propagators.
In our calculation, we applied the Chebyshev propagator35 for
the imaginary time (i.e., the Boltzmann operator) propagation,
and the sixth-order symplectic integrator36 for the real time
propagation. Both of these are of higher order than the split
operator37 and thus can achieve more accurate results with
moderate numerical effort. Furthermore, these two propagators
are easily implemented, with the primary computational task
being the Hamiltonian matrix acting on a vector. This is
particularly convenient for the exactJ > 0 rate calculation, since
from eq 3.4 the Hamiltonian matrix has a simple block
tridiagonal structure, and thus its operation on a vector scales
linearly versus the maximum angular momentum projection onto
the body-fixed axis,Kmax. In the previous split-operator
propagation for Cl+ H2 reaction,7 each (j,K) block had to be
diagonalized, and thus the propagator for angular degree of
freedom was dense and scaled quadratically inKmax. For the F
+ H2 reaction, we found thatKmax ) 4 was adequate to obtain
converged results, so that the symplectic integrator is much more
efficient than the split-operator.

F. Flux Operator and Dividing Surface. The form for
the flux operator used in this work is

where the dividing surface separating reactants and products is
defined by the equations(q) ) 0 andh(s) is the Heaviside step
function, which is zero fors < 0 and 1 fors > 0. This is not
the only possible expression forF̂, and the different choices do
not all possess the same numerical properties in a finite basis
representation. This form, however, is most easily incorporated
in a multidimensional problem and can be conveniently applied
using sparse matrix multiplication techniques.

The matrix elements of the flux operator in the DVR are
easily evaluated as

whereh(sj) is the step function evaluated at thejth DVR point,
andT j,j ′ is the kinetic energy matrix. The dividing surface used
in this study is defined bys ) R - X ) 0, whereX is taken to
be between 4.0 and 5.0 au. We note that the exoergicity of
this reaction dictates that the flux dividing surface be moved
somewhat into the reactant valley for the reasons given in section
II for the splitting up of the Boltzmannized flux operator.

G. Absorbing Potential. The absorbing potential is taken
to be a quartic function of the coordinates defined in section
III.D:

We have found this form works well and is easy to converge
with respect to the parametersλ, s0, andsmax. Typically λ )
1.5-2.0 eV ands0 is chosen such that approximately 30-40%
of the grid points are in absorbing region.

IV. Results and Discussion

Calculations of the thermal rate constants for the F+ H2 f
HF + H reaction have been carried out using the methodology
described in sections II and III over the temperature range 300-
700 K. The exact treatment of theJ > 0 contribution (section
III.A) was carried out at two temperatures (300 and 600 K) in
order to calibrate the simpler JSA (section III.B) and PA/HCA
(section III.C) approaches that were then used for more values
of T. As usual,38 the rate constant given by eq 1.1 was also
divided by the factor,

which arises from the ratio of electronic partition functions,
where∆ ) 404 cm-1 is the spin-orbit splitting39,40 of F(2Pj).
The rate constants presented here are numerically converged to
at least ∼10%. The accuracy is primarily limited by the
exoergicity of the reaction; it could be improved by significantly
increasing the density of DVR grid points (i.e., increasingNB)
with a corresponding cost in the calculation time.

Figure 2 shows the even and odd parityJ ) 0 flux-flux
autocorrelation functions for the reaction at (a)T ) 300 K and
(b) T ) 600 K. They were obtained by propagating 10 and 12
eigenvectors, respectively, of the half-Boltzmannized flux
operator (while the size of the DVR basis was 1800 and 2000
grid points, respectively). For both temperatures the propagation
time must be rather long in order to capture the slowly decaying,
long time tail of the correlation function. The even parity
correlation function converges to zero in∼325 fs at 300 K and
in ∼90 fs at 600 K. Note that in both cases the odd parity
correlation function decays to zero significantly faster (in∼175
and∼50 for 300 and 600 K, respectively). As discussed above,
the flux dividing surface is placed somewhat into the reactant
valley, and thus amplitude reflected from the barrier (even
amplitude that never reaches the transition state and is therefore
not transition state theory “violating”) recrosses the dividing
surface.

It is worth noting from Figure 2 that the odd and even parity
rates will obviously be quite different. This is in contrast to
the Cl + H2 reaction,7 which has a large barrier for internal
rotation of H2 in the transition state and thus has equal rates
for even and odd parity. This is a reflection of the fact that the
barrier to internal rotation of H2 at the F‚‚‚H2 transition state is
quite small.

∆x ) 2π
NB

(2µkBT

p2 )-1/2

(3.13)

F̂ ) i
p
[Ĥ,ĥ(s(q))] (3.14)

Fj,j ′ ) i
p
T j,j ′[h(sj′) - h(sj)] (3.15)

ε(s) ) λ( s - s0

smax - s0
)4

(3.16)

qel(T) ) 2 + e-∆/kBT (4.1)
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Table 1 compares the total rate constants from the exactJ *
0 calculation with those obtained using the simpler JSA and
PA/HCA approaches. Note that the JSA rate constants are
greater than the exact rates, while the PA/HCA gives values
that are lower. Overall, the agreement is reasonably good,
particularly for the PA/HCA rates, which are within 15% of
the exact rate at 300 K and within 8% at 600 K. TheJ-shifting
rates are within 12 and 30% of the exact result at 300 and 600
K, respectively. The accuracy of these approximate approaches
underscores their usefulness, especially when one considers the
large savings in computational effort they provide. An interest-
ing feature of the rates presented here is that we observe a very
weak dependence of theJ ) 0 rate constant on the temperature.

In fact, the J ) 0 rate is seen todecreaseabove 400 K.
However, the total rate constant increases with increasing
temperature. Thus, the qualitative Arrhenius behavior of the
total rate is dominated by the effects of overall rotation.

Several other dynamics calculations have been carried out
on this same Stark-Werner (SW) surface, including quasiclas-
sical trajectory41 and quantum scattering studies.42 We refer
the reader to the recent excellent review by Manolopoulos22 on
this reaction. Of particular interest in the context of this paper
are the calculations by Rosenman et al.38 They calculated
reactive cross sections and thermal rate constants on the SW
surface using the helicity-conserving approximation (HCA) to
include nonzero total angular momentum. They obtained results
in reasonably good agreement with the experimentally measured
rates of Wurzberg and Houston43 and Stevens et al.44 Another
experimental study by Heidner et al.45 has reported rate constants
that are∼20% larger than the two experiments just mentioned,
but agree very well with the calculations of Rosenman et al.38

at T ) 298 K.
There are, however, some questions in applying the conven-

tional HCAswhich uses theR axis as the body-fixed axissto
this reaction sinceR is not a very good “almost” symmetric
top axis for this molecular system. Indeed, we found in our
previous study7 of the similar reaction Cl+ H2 f HCl + H
that the conventional HCA overestimated the rates by∼20-
40%, a result even worse than the simpleJ-shifting approxima-
tion. The PA/HCA, which uses one of the instantaneous
principal axes as the body-fixed axis for the purpose of making
the helicity-conserving approximation, is thus preferred.

Figure 3 is an Arrhenius plot of the present results compared
with those from previous experiments43-45 and theoretical
calculations.38 The numerical values of the rates are given in
Table 2. The conventional HCA rates by Rosenman et al.38

are larger (by∼30%) at all temperatures than the present exact
treatment of theJ > 0 case, indicating that HCA is poorer than
PA/HCA or even simpleJ-shifting approximation and is thus
not as useful an approximation for treating this reaction.

The rate constants obtained from the exact treatment of the
J > 0 case described in this paper are in excellent agreement

Figure 2. Even (solid line) and odd (dashed line) parity flux-flux
autocorrelation functions for the F+ H2 reaction at (a)T ) 300 K and
(b) T ) 600 K.

TABLE 1: Comparison of Thermal Rate Constants from
Exact J * 0 Calculations with Those Using the PA/HCA and
J-Shifting Approximations to Include the Effect of J * 0
Total Angular Momentum for the Three-Dimensional F +
H2 Reaction in Units of cm3 molecule-1 s-l

k(T)/10-13

temp (K) J-shifting PA/HCA exact

300 2.52 1.93 2.26
350 3.48 2.58
400 4.42 3.27
450 5.08 3.74
500 5.74 4.16
600 7.32 5.27 5.68
700 8.62 6.19

Figure 3. Arrhenius plot of the thermal rate constant for the F+ H2

reaction. The present exact results are shown by the solid line with
solid circles, the present PA/HCA results by the solid line with×’s,
the theoretical results of Rosenman et al. by the dot-dashed line and
solid diamonds, the experimental results of Wurzberg and Houston by
the dashed line and open squares, the experimental results of Stevens
et al. by the long dashed line and open triangles, and the experimental
results of Heidner et al. by the dotted line and open circles. (The lines
are intended simply as a guide to the eye.)
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(within 10%) with the experimental results of both Wurzberg
and Houston43 and Stevens et al.44 The rate constants experi-
mentally measured by Heidner et al.45 are larger than all the
other reported rates, including those presented here at both 300
and 600 K. Unfortunately, above 400 K these are the only
experimental rates that have been reported to our knowledge.
It would be beneficial to have more experimental data at higher
temperatures to resolve such discrepancies and to allow more
definite conclusions on the quality of the potential energy
surface.

V. Concluding Remarks

The flux-flux autocorrelation function methodology has been
used successfully to calculate thermal rate constants for the F
+ H2 reaction “directly”. Because of the extreme exothermicity
of this reaction, a variation of our previous version of the
calculation has proved very useful.

The contribution to the rate for total angular momentumJ >
0 was treated both exactly (at two temperatures) and also via
theJ-shifting and principal axis helicity-conserving approxima-
tions. The latter approximation is the better (good to 8-15%),
but the former (good to 12-30%) is simpler.

Good agreement is obtained with the experimental results of
Wurzberg and Houston43 and Stevens et al.44 at T ) 300 K.
There is, however, a caveat with regard to this good agreement:
46 as Manolopoulos discusses,22 it is expected that the inclusion
of spin-orbit coupling in the potential energy surface will raise
the effective classical barrier height (by lowering the F+ H2

asymptote) by∼0.3-0.4 kcal/mol (∼1/3 of the spin-orbit
splitting in the F atom), and this will tend to decrease the rate
constant. If, on the other hand, electronically nonadiabatic
dynamics is taken into account, then nonadiabatic transitions
from the nonadiabatic potential surfaces will tend to increase
the rate. Thus an absolutely definitive calculation of the rate
constant, which could be carried out by the present methodology,
must await potential energy surfaces and dynamical treatments
that include these effects.
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V.; Stark, K.; Werner, H. J.J. Chem. Phys.1995, 102, 9248.

(42) Castillo, J. F.; Manolopoulos, D. E.; Stark, K.; Werner, H. J.J.
Chem. Phys. 1996, 104, 6531.

(43) Wurzberg, E.; Houston, P. L.J. Chem. Phys.1980, 72, 4811.

(44) Stevens, P. S.; Brune, W. H.; Anderson, J. G.J. Phys. Chem.1989,
93, 4068.

(45) Heidner, III, R. F.; Bott, J. F.; Gardner, C. E.; Melzer, J. E.J.
Chem. Phys. 1980, 72, 4815.

(46) We thank the referee for suggesting that these issues be noted.

Thermal Rate Constants for F+ H2 f HF + F J. Phys. Chem. A, Vol. 102, No. 47, 19989379


